Department of Plant Biology College of Natural Science

Plant Biology 105

Fall, Spring. 3(3-0) SA: BOT 105 structure, function, development, genetics, Plant diversity and ecology.

106 Plant Biology Laboratory

Fall, Spring. 1(0-3) P: PLB 105 or concur-rently SA: BOT 106

Cell structure, anatomy, physiology, growth and development, and diversity of plants.

162 **Organismal and Population Biology**

Fall, Spring, Summer. 3(3-0) Interdepartmental with Biological Science and Zoology. Administered by Biological Science. P: BS 161 or BS 181H or LB 145 SA: BS 110, BS 148H Not open to students with credit in BS 182H or LB 144.

Biological diversity and organismal biology. Principles of evolution, transmission genetics, population biology, community structure, ecology.

172 **Organismal and Population Biology** Laboratory

Fall, Spring, Summer. 2(1-3) Interdepart-mental with Biological Science and Zoology. Administered by Biological Science. P: (BS 162 or concurrently) or (BS 182H or concurrently) SA: BS 110, BS 158H Not open to students with credit in BS 192H or LB 144.

Nature and process of organismal biology including experimental design, statistical methods, hypothesis testing in genetics, ecology, and evolution.

182H Honors Organismal and Population Biology

Fall. 3(3-0) Interdepartmental with Biological Science and Lyman Briggs and Zoology. Administered by Biological Science. SA: BS 148H, BS 110 Not open to students with credit in BS 162 or LB 144.

Diversity and basic properties of organisms, with emphasis on genetic principles, ecological interactions, and the evolutionary process. Historical approach to knowledge discovery.

192H Honors Organismal and Population **Biology Laboratory**

Fall. 2(1-3) Interdepartmental with Biological Science and Lyman Briggs and Zoology. Administered by Biological Science. P: BS 182H or concurrently SA: BS 158H, BS 110 Not open to students with credit in BS 172 or LB 144.

Nature and process of organismal biology, including experimental design and statistical methods, hypothesis testing, genetics, ecology, and evolution.

203 **Biology of Plants**

Fall. 4(4-0) P: (BS 162 or concurrently) or (LB 144 or concurrently) or (BS 182H or concurrently)

Evolution and diversification of plants. Structural innovations and physiological attributes of vascular land plants. Career opportunities, developing professional practices and Responsible Conduct of Research (RCR).

218 **Plants of Michigan**

Fall. 3(2-2) P: BS 162 or PLB 105 or LB 144 or BS 182H SA: BOT 218

Plant taxa of Michigan and the Great Lakes region and the major habitats in which they occur. Principles and rationale of classification. Relationships between life histories, morphology and environment.

301

Introductory Plant Physiology Fall. 3(3-0) P: {CEM 141 or CEM 151 or LB 171 or CEM 181H} and ((PLB 105 or BS 161 or LB 145 or BS 181H) and completion of Tier I writing requirement) SA: BOT 301

General principles of plant physiology relating plant structure to function. Cell physiology, water relations, effects of light and temperature, respiration, photosynthesis, mineral nutrition, and hormone action

319 Introduction to Earth System Science

Fall. 3(3-0) Interdepartmental with Entomology and Geological Sciences and Sociology and Zoology. Administered by Entomology. RB: Completion of one course in biological or physical science.

Systems approach to Earth as an integration of geochemical, geophysical, biological and social components. Global dynamics at a variety of spatiotemporal scales. Sustainability of the Earth system.

341 **Fundamental Genetics**

Fall, Spring, Summer. 4(4-0) Interdepart-mental with Zoology. Administered by Zool-ogy. P: BS 161 or LB 145 or BS 181H

Principles of heredity in animals, plants and micro-organisms. Classical and molecular methods in the study of gene structure, transmission, expression and evolution.

355 Ecology

Fall, Spring, Summer. 3(3-0) Interdepartmental with Zoology. Administered by Zoology. P: BS 162 or LB 144 or BS 182H SA: ZŐI 250

Interrelationships of plants and animals with each other and the environment. Principles of individual, population, community, and ecosystem ecology. Application of ecological principles to global change and other anthropogenic stressors.

355L

Ecology Laboratory (W) Fall, Spring, Summer. 1(0-3) Interdepart-mental with Zoology. Administered by Zool-ogy. P: (ZOL 355 or concurrently) and completion of Tier I writing requirement

Population, community, and ecosystem ecology, utilizing plant and animal examples to demonstrate general field principles.

Introduction to Bioinformatics 400

Spring of odd years. 3(2-2) Interdepartmental with Biochemistry and Molecular Biology and Microbiology and Molecular Genetics. Administered by Plant Biology. P: (STT 200 or STT 201 or STT 231 or STT 421) and (PLB 203 or MMG 201 or BMB 200) RB: An introductory biology course covering basic genetics, macromolecules, evolution, energy metabolism, genetic materials, and signal transduction is recommended for non-biology majors. A statistic course covering random variable, distributions, and basic probability theory is rec-ommended for biology majors.

Bioinformatic theory and practice. How to manage and analyze sequences, structures, gene expression, and other types of biological data.

402 **Biology of Fungi**

Fall of odd years. 4(2-4) Interdepartmental with Plant Pathology. Administered by Plant Biology. P: BS 162 or BS 161 or PLB 105 or LB 144 or LB 145 or BS 182H or BS 181H SA: BOT 402

Characteristics, habitats, and diversity of major groups of fungi. Ecologic and economic importance of fungi.

407 Diseases and Insects of Forest and Shade Trees

Spring. 4(3-3) Interdepartmental with Entomology and Plant Pathology. Administered by Plant Pathology. P: (PLB 105 or BS 162 or LB 144) and Completion of Tier I Writing Requirement SA: BOT 407

Diseases, insects, and environmental problems affecting trees in forests, parks, suburbs, and nurseries. Methods of control.

415

Plant Physiology Spring. 3(3-0) P: (CEM 143 or CEM 251 or CEM 351) and (BS 161 or LB 145 or BS 181H) SA: PLB 414

Principles of plant metabolism, growth, and development. Photosynthesis, water relations, nitrogen metabolism, and cell wall biosynthesis. Environmental and hormonal factors that control plant growth and development. Gene regulation and genetic engineering of plants.

416L

Plant Physiology Laboratory Spring. 2(1-3) P: (CEM 143 or CEM 351 or CEM 251) and (BS 161 or LB 145 or BS 181H) and (PLB 415 or concurrently)

Experimental methods and experiment design in plant physiology and molecular biology, with emphasis in photosynthesis, water relations, plant growth, plant development, genetics and gene regulation. Communication of scientific information in written and graphical format.

418 Plant Systematics

Spring, Summer. 3(2-3) P: PLB 105 or BS 162 or LB 144 or BS 182H SA: BOT 418

Classification and evolution of higher plants, with emphasis on identification, characteristics of plant families, and systematic theory and practice.

424

Algal Biology Fall of even years, Summer of odd years. 4(2-4) Interdepartmental with Zoology. Administered by Plant Biology. P: (BS 162 or LB 144 or BS 182H) and (BS 172 and completion of Tier I writing requirement) RB: ZOL 355 and ZOL 355L SA: BOT 424

Algal taxonomy, systematics, physiology, ecology, and environmental assessment. Lab focus on identification of freshwater algal genera collected from regional habitats.

434 **Plant Structure and Function**

Spring of odd years. 4(2-4) P: (BS 161 and BS 162) or (LB 144 and LB 145) or (BS 181H and BS 182H) SA: BOT 434

Plant anatomy from a structural and functional perspective. Physiological, developmental, and ecological significance of cell types, tissue types, and meristems of vegetative and reproductive plant parts.

440 **Field Ecology and Evolution**

Summer. 4 credits. Interdepartmental with Zoology. Administered by Zoology. P: ZOL 355

Solving conceptual and practical research problems in ecology and evolution under field conditions.

441 Plant Ecology

Fall. 3(3-0) P: (BS 162 or LB 144 or ZOL 355 or BS 182H) and completion of Tier I writing requirement SA: BOT 441

Ecology of plants and their communities. Effects of biotic and climatological factors influencing global distribution of plant communities. Community structure and function, microclimatology, ecophysiology, and adaptation.

Restoration Ecology 443

Spring. 3(2-2) Interdepartmental with Bio-systems Engineering and Fisheries and Wildlife and Zoology. Administered by Fish-eries and Wildlife. P: FOR 404 or PLB 441 or ZOL 355 RB: CSS 210 or BE 230

Principles of ecological restoration of disturbed or damaged ecosystems. Design, implementation, and presentation of restoration plans. Field trips required.

445

Evolution (W) Fall, Spring, Summer. 3(3-0) Interdepart-mental with Crop and Soil Sciences and Zoology. Administered by Zoology. P: (ZOL 341 or CSS 350) and completion of Tier I writing requirement R: Not open to freshmen. SA: ZOL 345

Processes of evolutionary change in animals, plants. Microbes. Population genetics, microevolution, speciation, adaptive Origin of Homo sapiens. radiation, macroevolution.

485 **Tropical Biology**

Fall. 3(3-0) Interdepartmental with Zoology. Administered by Zoology. P: ZOL 355 R: Open to juniors or seniors.

Tropical biota emphasizing evolutionary and ecological principles compared across tropical ecosystems.

490 **Directed Studies**

Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 6 credits in all enrollments for this course. P: Completion of Tier I Writing Requirement RB: One year of college biology. R: Approval of department. SA: BOT 490

Directed study of published literature in an area of plant biology.

Honors Directed Studies 490H

Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 6 credits in all enrollments for this course. P: Completion of Tier I Writing Requirement RB: One year of college biology. R: Approval of department. SA: BOT 490H

Directed study of published literature in an area of plant biology.

495 **Botanical Garden Internship**

Fall, Spring, Summer. 2 to 8 credits. A student may earn a maximum of 8 credits in all enrollments for this course. R: Approval of department. SA: BOT 495

Activities, functions and organization of botanical gardens. Principles of live plant curation.

498 **Undergraduate Research**

Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 12 credits in all enrollments for this course. P: (BS 161 and BS 162 and BS 171 and BS 172) or (LB 144 and LB 145) or ((BS 181H and BS 182H and BS 191H and BS 192H) and completion of Tier I writing requirement) R: Approval of department. SA: BOT 498

Laboratory and/or field research in an area of plant biology.

499

Senior Seminar (W) Spring. 1(1-0) P: (PLB 498) and completion of Tier I writing requirement SA: BOT 499 A capstone experience that focuses on current developments and issues in plant biology. Scientific writing and oral presentation.

801 Foundations of Plant Biology Fall. 3(3-0)

An introduction to the history and current status of major research questions in plant biology, and approaches used to answer them.

Selected Topics in Plant Biology 802

Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 12 credits in all enrollments for this course. R: Open only to graduate students in College of Natural Science or College of Agriculture and Natural Resources. SA: BOT 802

Recent developments in plant biology.

Frontiers in Plant Biology 804

Spring. 2(2-0)

Introduction to new and emerging research directions in the plant sciences, and provide tools needed for professional development.

805 Special Problems in Physiology and Biochemistry

Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 12 credits in all enrollments for this course. R: Open only to graduate students in College of Natural Science or College of Agriculture and Natural Resources. SA: BOT 805

Faculty directed individualized study of a selected problem.

806 Special Problems in Genetics and Molecular Biology

Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 12 credits in all enrollments for this course. R: Open only to graduate students in College of Natural Science or College of Agriculture and Natural Resources. SA: BOT 806

Faculty directed individualized study of a selected problem.

Special Problems in Mycology 807

Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 12 credits in all enrollments for this course. R: Open only to graduate students in College of Natural Science or College of Agriculture and Natural Resources. SA: BOT 807

Faculty directed individualized study of a selected problem.

Special Problems in Ecology, 809 Systematics, and Evolution

Fall, Spring, Summer. 1 to 4 credits. A student may earn a maximum of 12 credits in all enrollments for this course. R: Open only to graduate students in College of Natural Science or College of Agriculture and Natural Resources. SA: BOT 809

Faculty directed individualized study of a selected problem.

810 Theories and Practices in Bioinformatics Spring of odd years. 3(2-2) Interdepartmental with Biochemistry and Molecular Biology and Microbiology and Molecular Genetics. Administered by Plant Biology. RB: Basic genetics, macromolecules, evolution, energy metabolism, genetic materials, and signal transduction is recommended for non-biology majors. A statistic course covering random variable, distributions, and basic probability theory is recommended for biology majors.

Theories and algorithms behind bioinformatics tools. Basic tool development by writing scripts in the Python programming language for data analysis.

812 **Principles and Applications of Plant** Genomics

Fall. 3(2-2) RB: Undergraduate genetics course and one undergraduate course of Biochemistry, cell biology or molecular biology R: Open to graduate students.

Foundations, principles, and applications of genome sequencing, genome analysis, expression profiling, and systems biology with respect to plant biology.

820 Plant Reproductive Biology and Polyploidy

Spring of odd years. 1(3-0) Interdepartmental with Crop and Soil Sciences and Forestry and Horticulture and Plant Pathology. Administered by Horticulture. RB: In-

Genetic processes underlying variations in plant reproductive biology and polyploidy. Utilization of these characteristics in plant breeding.

821 **Crop Evolution**

Spring of odd years. 1 credit. Interdepartmental with Crop and Soil Sciences and Forestry and Horticulture and Plant Pathology. Administered by Horticulture. RB: Introductory Genetics and Plant Biology

Cultural and biological aspects of the evolution of domestic plants.

822

Historical Geography of Crop Plants Spring of odd years. 1 credit. Interdepart-mental with Crop and Soil Sciences and Forestry and Horticulture and Plant Pathol-ogy. Administered by Horticulture. RB: Introductory Genetics and Plant Biology Development and spread of the major crop species.

Conservation and Genetics 828

Fall of even years. 3(2-2) Interdepartmental with Fisheries and Wildlife and Zoology. Administered by Fisheries and Wildlife. RB: ZOL 341 or CSS 350 or ANS 314

Population and evolutionary genetic principles applied to ecology, conservation, and management of fish and wildlife at the individual, population, and species level.

Advanced Mycology 847

Spring of even years. 4(2-4) Interdepartmental with Plant Pathology. Administered by Plant Pathology. RB: PLB 402 SA: BOT 847

Systematics, identification, physiology, genetics, and molecular biology of plant pathogenic fungi.

849 Evolutionary Biology

Spring. 3(3-0) Interdepartmental with Zoology. Administered by Plant Biology. RB: ZOL 341 and (STT 422 or concurrently) SA: BOT 849

Major conceptual, theoretical and empirical questions in evolutionary biology. Readings and lectures are synthesized in student discussions and papers.

851 Statistical Methods for Ecology and Evolution

Fall. 3(2-2) Interdepartmental with Zoology. Administered by Zoology. RB: (STT 814) or or an equivalent course.

Statistical modeling and interpretation of biological data using computationally intensive methods for estimation and inference. General linear models, mixed and process models, and estimation strategies applied to students using their own data using the R language.

855 Molecular Evolution: Principles and Techniques

Fall of odd years. 3(3-0) Interdepartmental with Microbiology and Molecular Genetics and Zoology. Administered by Zoology. RB: ZOL 341 or ZOL 445

Current techniques used to characterize and compare genes and genomes. Genetic variation, assays of variation. Data analysis and computer use to conduct a phylogenetic analysis to compare organisms and infer relationships.

856 Plant Molecular and Omic Biology

Spring. 3(3-0) Interdepartmental with Biochemistry and Molecular Biology and Crop and Soil Sciences. Administered by Plant Biology. RB: ZOL 341 SA: BOT 856

Recent advances in genetics and molecular biology of higher plants.

863 Environmental Plant Physiology

Spring of odd years. 3(3-0) Interdepartmental with Horticulture. Administered by Plant Biology. RB: PLB 301 or PLB 414 or PLB 415 SA: BOT 863

Interaction of plant and environment. Photobiology, thermophysiology, and plant-water relations.

864 Plant Biochemistry

Fall. 3(3-0) Interdepartmental with Biochemistry and Molecular Biology. Administered by Biochemistry and Molecular Biology. RB: (BMB 401 or BMB 462) and prior undergraduate course in plant physiology. SA: BCH 864

Biochemistry unique to photosynthetic organisms. Photosynthetic and respiratory electron transport, nitrogen fixation, carbon dioxide fixation, lipid metabolism, carbon partitioning, cell walls, sulfur and nitrogen metabolism and specialized metabolism including isoprenoids, phenylpropanoids and alkaloids.

865 Plant Growth and Development

Fall of even years. 3(3-0) Interdepartmental with Horticulture. Administered by Plant Biology. RB: PLB 415 SA: BOT 865

Genetics and molecular biology of development in higher plants as influenced by genes and environment. Biosynthesis, action and signal transduction of phytohormones and other signaling molecules. Initiation, formation and patterning of plant organs and cell types. Genetic mechanisms underlying developmental diversity.

884 Prokaryotic Diseases of Plants

Fall of even years. 3(3-0) Interdepartmental with Plant Pathology. Administered by Plant Pathology. RB: PLP 405 SA: BOT 884

Prokaryotic genera associated with plant diseases. Genetics and host-pathogen interactions. Prokaryotic disease control strategies.

891 Current Topics in Ecology and Evolution

Summer. 1 to 2 credits. A student may earn a maximum of 10 credits in all enrollments for this course. Interdepartmental with Crop and Soil Sciences and Zoology. Administered by Zoology. Presentation and critical evaluation of theoretical

Presentation and critical evaluation of theoretical and empirical developments in ecology and evolutionary biology by visiting scientists.

896 Population and Community Ecology

Fall. 4(4-0) Interdepartmental with Zoology. Administered by Zoology.

Population dynamics of animals and plants utilizing life tables and projection matrices. Species interaction. Life history theory. Structure and dynamics of communities. Succession.

897 Ecosystem Ecology and Global Change

Spring of odd years. 4(4-0) Interdepartmental with Fisheries and Wildlife and Zoology. Administered by Zoology.

Structure and function of natural ecosystems and their responses to global environmental change. Biogeochemical cycles, food webs, energy flow, nutrient cycling, and ecosystem management and restoration.

898 Population and Community Ecology Theory Laboratory

Fall. 1(0-3) Interdepartmental with Zoology. Administered by Plant Biology. RB: 1 semester of calculus

Practical experience designing and analyzing mathematical models in ecology from single species to communities, food webs and ecosystems.

899 Master's Thesis Research

Fall, Spring, Summer. 1 to 12 credits. A student may earn a maximum of 24 credits in all enrollments for this course. R: Open only to graduate students. SA: BOT 899

Research in anatomy, bryology cell biology, ecology, genetics, molecular biology, morphology, mycology, paleobotany, pathology, physiology and systematics.

999 Doctoral Dissertation Research

Fall, Spring, Summer. 1 to 12 credits. A student may earn a maximum of 36 credits in all enrollments for this course. R: Open to doctoral students. SA: BOT 999

Research in anatomy, bryology, cell biology, ecology, genetics, molecular biology, morphology, mycology, paleobotany, pathology, physiology and systematics.